Metabolic inhibition with cyanide induces calcium release in pulmonary artery myocytes and Xenopus oocytes.
نویسندگان
چکیده
We examined the effects of metabolic inhibition on intracellular Ca(2+) release in single pulmonary arterial smooth muscle cells (PASMCs). Severe metabolic inhibition with cyanide (CN, 10 mM) increased intracellular calcium concentration ([Ca(2+)](i)) and activated Ca(2+)-activated Cl(-) currents [I(Cl(Ca))] in PASMCs, responses that were greatly inhibited by BAPTA-AM or caffeine. Mild metabolic inhibition with CN (1 mM) increased spontaneous transient inward currents and Ca(2+) sparks in PASMCs. In Xenopus oocytes, CN also induced Ca(2+) release and activated I(Cl(Ca)), and these responses were inhibited by thapsigargin and cyclopiazonic acid to deplete sarcoplasmic reticulum (SR) Ca(2+), whereas neither heparin nor anti-inositol 1,4,5-trisphosphate receptor (IP(3)R) antibodies affected CN responses. In both PASMCs and oocytes, CN-evoked Ca(2+) release was inhibited by carbonyl cyanide m-chlorophenylhydrazone (CCCP) and oligomycin or CCCP and thapsigargin. Whereas hypoxic stimuli resulted in Ca(2+) release in pulmonary but not mesenteric artery myocytes, CN induced release in both cell types. We conclude that metabolic inhibition with CN increases [Ca(2+)](i) in both pulmonary and systemic artery myocytes by stimulating Ca(2+) release from the SR and mitochondria.
منابع مشابه
Effects of L-type Calcium Channel Antagonists Verapamil and Diltiazem on fKv1.4ΔN Currents in Xenopus oocytes
The goal of this study was to determine the effects of the L-type calcium channel blockers verapamil and diltiazem on the currents of voltage-gated potassium channel (fKv1.4ΔN), an N-terminal-deleted mutant of the ferret Kv1.4 potassium channel. Measurements were made using a two electrode voltage clamp technique with channels expressed stably in Xenopus oocytes. The fKv1.4ΔN currents displayed...
متن کاملEffects of L-type Calcium Channel Antagonists Verapamil and Diltiazem on fKv1.4ΔN Currents in Xenopus oocytes
The goal of this study was to determine the effects of the L-type calcium channel blockers verapamil and diltiazem on the currents of voltage-gated potassium channel (fKv1.4ΔN), an N-terminal-deleted mutant of the ferret Kv1.4 potassium channel. Measurements were made using a two electrode voltage clamp technique with channels expressed stably in Xenopus oocytes. The fKv1.4ΔN currents displayed...
متن کاملAdenophostin A induces spatially restricted calcium signaling in Xenopus laevis oocytes.
The activation of intracellular calcium release and calcium entry across the plasmalemma in response to intracellular application of inositol 2,4,5-trisphosphate and adenophostin A, two metabolically stable agonists for inositol 1,4,5-trisphosphate receptors, was investigated using Xenopus laevis oocytes and confocal imaging. Intracellular injection of inositol 2,4,5-trisphosphate induced a rap...
متن کاملActivation of K+ channels induces apoptosis in vascular smooth muscle cells.
Intracellular K+ plays an important role in controlling the cytoplasmic ion homeostasis for maintaining cell volume and inhibiting apoptotic enzymes in the cytosol and nucleus. Cytoplasmic K+ concentration is mainly regulated by K+ uptake via Na+-K+-ATPase and K+ efflux through K+ channels in the plasma membrane. Carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), a protonophore that dis...
متن کاملNitric Oxide-Donor SNAP Induces Xenopus Eggs Activation
Nitric oxide (NO) is identified as a signaling molecule involved in many cellular or physiological functions including meiotic maturation and parthenogenetic activation of mammalian oocytes. We observed that nitric oxide donor SNAP was potent to induce parthenogenetic activation in Xenopus eggs. NO-scavenger CPTIO impaired the effects of SNAP, providing evidence for the effects of the latter to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 284 2 شماره
صفحات -
تاریخ انتشار 2003